Optimerade kyllösningar i ett litet paket
Effektiva lösningar för kylning och energiåtervinning är mycket viktiga inom datalagring, ett område där förändringar ofta sker snabbt. SWEP:s lödda plattvärmeväxlare tillhandahålla mycket effektiva och utrymmesbesparande lösningar.
BPHE-lösningar används inom kylning av datacenter

Lösningar för vätskebaserade och tvåfas CDU
Kompromissa inte med energieffektiviteten!
Få några av SWEPs bästa tips och framåtblickande lösningar för energichefer för datacenter
CDU för kylning av datacenter
Vätske-CDU för kylning av datacenter
Det vita området inom datacenterna har högre pris och utrymmet måste optimeras. Med SWEP:s lödda värmeväxlare kan du använda ultrakompakta rad- eller rack-CDU med oöverträffad kylkapacitet. Med våra värmeväxlare med 2-passflödesmönster kan du nästan fördubbla den termiska längden på samma utrymme och samtidigt minimera utrymmet som krävs.
SWEP-serien BPHE-värmeväxlare för tvåfasfluider är oöverträffad. CDU med kondenserande fluider kräver noggrant val efter de specifika behoven. Dessa BPHE-enheter kan lätt simuleras i vårt SSP-program som bygger på verkliga test, så att ditt system får korrekt optimerade och tillförlitliga egenskaper.

SWEP erbjuder ett omfattande sortiment av värmeväxlare konstruerade för vätskekylda CDU-system.
- Vätskekylningens kapacitetsområden baseras på vatten eller propylenglykol (30 %)
- Vatteninlopp 25 °C (77 °F))
- Propylenglykol (30 %) Inlopp 55 °C (131 °F)
- Kontakta SWEP om du vill ha mer information eller hjälp med val.

SWEP erbjuder ett omfattande sortiment av värmeväxlare konstruerade för 2-fas CDU-system
- 2-tvåfaskylning baserat på köldmediets inloppsintervall på 16-20 °C (61-68 °F)
- Enheterna finns i kondensor- och kaskadutförande
- Kontakta SWEP om du vill ha mer information eller hjälp med val.

Mekanisk kylningOptimerade kylaggregatlösningarSWEP:s omfattande serie av BPHE-förångare för kylaggregat kombinerar innovativ platt- och distributionsteknik som kan maximera kapaciteten och effektiviteten. Vi arbetar med alla de vanligaste köldmedierna och flera ovanligare typer, plus A2L och A3, vilket gör oss till en idealpartner för kylaggregat i datacenter. BPHE-tekniken passar också perfekt för exempelvis kondensor, economizer samt för enkel- eller dubbelväggig värmeåtervinning. |
![]() |
SWEP erbjuder förångare med distributionssystem som optimeras för en mängd olika köldmedier och uppgifter.
Kurvorna nedan visar vilken SWEP-förångare som passar bäst baserat på systemets kylaggregatkapacitet för R134a och R410A
![]() |
![]() |
Trane: Uppfylla och överträffa Ecodesign-direktiven med upp till 20 % med hjälp av SWEP BPHE
SWEP:s True Dual DFX650 hjälper den ledande HVAC-systemtillverkaren Trane att uppfylla och överträffa Ecodesign-direktiven avseende SEER (Seasonal Energy Efficiency Ratio–säsongsmässig energieffektivitetskvot) med upp till 20 % och sänka sina kunders energiförbrukning.
Ecodesign-direktivet berör alla typer av industrier genom att ställa upp minimistandarder avseende energieffektivitet för bland annat luftkylda kylaggregat och värmepumpar. Den nya policyn beräknas bespara européer i genomsnitt 490€ per år i energikostnader.


Frikyla/Economisers
Energisparande kyleffektivitet
Energi kan sparats om omgivningsluften eller någon annan kylningskälla kan användas för att kyla serverracket med kylaggregatet avstängt, och därmed utnyttja ”frikyla”. Vår BPHE-teknik är idealisk som mellanväxlare för att separera en extern glykolslinga och en intern serverslinga tack vare hög värmeeffektivitet och ett kompakt format.
SWEP:s produktserie innefattar den största BPHE-värmeväxlaren i världen med 6”-portar som klarar 340 m3/tim (1 500 GPM) per enhet. BPHE-enheterna är kompakta och möjliggör också moduluppsättningar som ser till att du alltid har hög tillförlitlighet även vid förhöjd belastning, samt kostnadseffektiv redundans.
Kapaciteten hos SWEP BPHE går mer än väl upp i megawatt-området och ger kompakt och kostnadseffektiv redundans.
![]() |
- Frikylans kapacitetsområden baseras på vatten och propylenglykol (30 %)
- Vatteninlopp 16 °C (61 °F)
- Etylenglykol (30 %) Inlopp 13 °C (55 °F)
- Kontakta SWEP om du vill ha mer information eller hjälp med val.
Effektiv kylning av Infosys datacentraler
Stora datacentraler behöver kraftfulla kylsystem. Infosys Technologies Ltd., ett ledande IT-företag med huvudkontoret i Bangalore, Indien, behövde flera kostnadseffektiva lösningar med hög effektivitet. Projektets konstruktionsteam från Schneider valde SWEP BPHE-värmeväxlare (lödda plattvärmeväxlare) tack vare deras höga energieffektivitet och tillförlitliga tekniska support.
SWEP BPHE används för att isolera den primära och sekundära källan eftersom den primära vattenkällan kommer från ett kyltorn. Den sekundära källan, dit vattnet ska matas, är kylspolar som matar kritisk IT-utrustning.

Kunden har engagerat sig i utvecklingen av högprecis teknik inom miljökontroll för storskaliga datacenter och andra affärskritiska områden.
SWEP-lösningen med (2) B427 BPHE-modeller installerade ger en redundant lösning som var mycket mindre än kunden ursprungligen hade planerat.

FAQs
We have gathered some of the most common questions and answers relating to data center cooling. FAQ
Need more information? Find your local sales representative https://www.swep.net/company/contacts/
Data center cooling (short DCC) refers to the control of temperature inside a data center to give IT equipment optimal working temperature, for best efficiency and durability. Excessive heat can lead to significant stress that can lead to downtime, damage to critical components, and a shorter lifespan for equipment, which leads to increased capital expenditure. Not only that. Inefficient cooling systems can increase power costs significantly from an operational perspective.
- A traditional DCC approach deals with Computer Room Air Conditioner (CRAC) in
order to keep the room and its IT racks fresh. Very similarly, Computer Room AirHandlers (CRAH) centralize the cooling water production for multiple units and/orrooms. Cooling water might be issued by an adiabatic cooling tower, a dry cooler,which counts as free-cooling, or with a dedicated chiller when the climate is toowarm.
- Because air is a bad heat carrier, various improvements have been developed to
increase cooling efficiency. Raised floor, hot aisle and/or cold aisle containment,and in-row up to In-rack cooling, have consistently decreased the losses.
- While CRAH units and cooling towers have become legacy, water usage has been growing year after year to become a challenge. Water is sprayed in the air to dissipate heat better than in a dry cooler. With growing water scarcity, Water Usage Effectiveness (WUE) is now an important factor for the data center industry.
- Liquid cooling is the most recent and advanced technology improvement and
includes hybrid systems with integral coil or Rear Door Heat-Exchanger (RDHX), and Direct-to-Chip (DTC) while immersed systems offer the best possible Power Usage Efficiency (PUE) with highest energy density and unequaled WUE.
The cost of data center cooling depends on the type of data center, the Tier level, the location, design choices including cooling technology, etc. Total Cost of Ownership (TCO) and Return on Investment (ROI) are probably a better approach to get a full view on cost.
TCO comprises of three critical components:
- CAPEX (Capital Expenditure) The initial investment which takes Tier level, expected lifetime and design choices into consideration – the cost to build.
- OPEX (Operational Expenditure) Refers to the operating and maintenance costs and considerations like location and design choices, including PUE and cooling
technology etc.
- Energy costs: since water scarcity and climate warming increase as well as fossil energy stocks decrease, increased attention should be given to Leadership in Energy and Environmental Design (LEED) certification.
These considerations lead to a more holistic view and better evaluation of ROI and strategic choices.
Water Usage Effectiveness (short WUE) is a simple rating in l/kWh comparing the annual data center water consumption (in liters) with the IT equipment energy consumption (in kilowatt hours). Water usage includes cooling, regulating humidity and producing electricity onsite. Uptime Institute claims that a medium-sized data center (15 MW) uses as much water as 3 average-sized hospitals or more than two 18-holes golf courses* While the demand is growing for more data centers, WUE becomes crucial while water scarcity becomes more and more common. As a result, data centers must rely on more sustainable cooling methods. Ramping up on renewable energies (solar and wind) also allows data centers to indirectly curb their water consumption while lowering carbon emissions.
Power Usage Effectiveness (short PUE) is a metric for the energy-efficiency of data centers; specifically how much energy is used by the computing equipment, in contrast to cooling and other overhead that supports the equipment. PUE is also the inverse Data Center Infrastructure Efficiency (DCIE). An ideal PUE is 1.0. Anything that isn’t considered a computing device in a data center (e.g. lighting, cooling, etc.) falls into the category of facility energy consumption. Traditional data centers score PUE around 1,7-1,8 or more while aisle containment lowers PUE down to 1,2. Liquid cooling technologies allow down to 1,05-1,1.
A Coolant Distribution Unit (short CDU) is a system that enables smaller, more efficient and more precise liquid cooling in a data center, often integrating facility water. The CDU circulates the coolant in a closed-loop system on the secondary side (cooling application) and utilizes facility water on the primary side. (heat rejection) A CDU has a pump, reservoir, power supply, control board, and a brazed plate heat exchanger (BPHE) as the key components. Filters, flow meters, pressure transducers, and other devices are also used for managing the operation of the CDU optimally. In-Rack CDUs are designed to integrate into a server chassis and distribute coolant to a series of servers or heat sources. In-Rack CDU offer up to 60-80kW of cooling capacity. These can feature redundant pump design, dynamic condensation-free control, automatic coolant replenishing, a bypass loop for stand-by operation, and automatic leak detection.Freestanding In-Row CDUs are larger and designed to manage high heat loads across a series of server chassis in data center. These full liquid cooling systems distribute coolant in and out of server chassis and can integrate into existing facility cooling systems or be designed to be fully self-contained. In-Row CDU capacity ranges typically around 300 kW with models up to 700 kW.
Direct-to-chip cooling (short DTC) utilizes cold plates in contact with hot components and removes heat by running cooling fluid through the cold plates. Cooling fluids can be a refrigerant (Direct expansion DX or 2-phase systems) or chilled water (single phase) in direct feed or via CDU. Practically, liquid cooled systems often have one or more loops for each server. In the GPU server (Graphic Processing Unit), there are five loops, so one needs a CDU for the rack. DTC extends cooling to CPU (Core Processing Unit), GPU, RAM (Random Access Memory) and NIC (Network Interface Card) for High-frequency trading, Hyperscale Computing, Rendering and Gaming, Supercomputer, Telecommunications, etc.
Immersion systems involve submerging the hardware itself into a bath of non-conductive and non-flammable liquid. Both the fluid and the hardware are contained within a leak-proof case. The dielectric fluid absorbs heat far more efficiently than air and is circulated to a BPHE where heat is transferred to the chilled facility water.
In a 2-phase system, the dielectric liquid is evaporated to vapor phase, re-condensed into liquid phase on top of the casing. Heat is captured by fluid’s evaporation and dissipated into the condenser toward chilled facility water. Because latent heat (phase change) is far more important than sensible heat (temperature change), data center density can reach unequaled level. Also, temperature stability is over the top since phase change occurs at constant temperature. Finally, peak loads are shaved by the thermal mass that the dielectric fluid volume represents.
An alternative system makes the dielectric fluid circulate inside the racks where IT equipment is enclosed into leakproof casings. More likely in single phase, dielectric fluid actively absorbs heat and is then cooled again in the CDU. As such, immersion cooling is the best data center cooling method, encouraging future applications like High Power Computing (HPC), machine learning Artificial Intelligence (AI), Crypto Money mining, Big data analytic programs, Internet of Things (IoT) with 5G and cloud computing deployment, etc.
Not necessarily. There is a significant quantity of copper in direct contact with the dielectric coolant, which is likely non-corrosive. Hence, copper-free BPHEs is not a must. Printed circuit boards (short PCB) are used in nearly all electronic products. This medium is used to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich structure of conductive and insulating layers: each of the conductive layers is designed with an artwork pattern of traces, planes and other features (similar to wires on a flat surface) etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate.
In Direct-to-Chip or DTC cooling, there is no direct contact between the electronics and the cooling fluid. It is crucial that the fluid is non-conductive in order to avoid perturbating the electronics operation and deionized water could be used. When reaching high purity and low electric conductivity (typically < 10 µS/cm), pure water becomes copper-corrosive.
When the DC uses evaporative or adiabatic cooling towers to reject heat, water is sprayed on the cooling air for better efficiency and resulting in a lower temperature than with a dry cooler. Unfortunately, in addition to water evaporation, salt concentration also increases to becoming fouling and corrosive. Water treatment then, becomes necessary, including water make-up for compensation, but associated operational cost rise. In order to limit this extra-cost, systems might be operated close to minimum water quality, which could result in copper-corrosive water. In these conditions, All-SS or copper-free BPHEs should be considered, but assessed case-by-case.